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Data manipulation and exploration with plyr and reshape

Today we’ll look at two data manipulation tools which are flexible and
powerful, but easy to use once you grasp a few concepts.

First is plyr, which extends functional programming tools in R (like
lapply) and makes the common data-analysis split-apply-combine
procedure easy and elegant.

Second is reshape(2), which makes it easy to change the format of data
frames and arrays from “wide” (observations spread across columns) and
“long” (observations spread across rows) formats.

Both are written by Hadley Wickham (like ggplot2).

(you can download the knitr source for these slides on my website)

http://www.bcs.rochester.edu/people/dkleinschmidt/assets/lsa13-plyr-reshape.Rnw
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split-apply-combine

freqEffects <- ddply(lexdec, .(Subject), function(df) {coef(lm(RT~Frequency, data=df))})

## Subject (Intercept) Frequency

## 1 A1 6.533 -0.05379

## 2 A2 6.355 -0.02832

## 3 A3 6.552 -0.03251

## 4 C 6.403 -0.01701

## 5 D 6.551 -0.03048

## 6 I 6.514 -0.05500

●●●● ●●●
●

●
● ●●

● ●
●

●
● ●

● ●

●●
● ●● ●●

●

●●
●

●●●●
●●●

●
●

●● ● ●●
●

●
●

●●

●
●● ● ●

●

●

●
●

●
●

●
● ●

●●
●●●

● ●●
●

●
●●●

●
●

●●●
●● ●●●●●●

●● ●●●● ● ●

●

●● ●●●
●

●● ●

●

● ●
●

● ●●●●●●● ●

●
●●●

●

●
●●

● ●●● ●●
●● ●● ●● ●●

● ● ●
●

●
●

●
●

●
●● ●● ●●

●●●●
●

●● ● ●●● ●● ●●●●●● ● ●
●●● ●● ●● ●

●
●● ●

●●●● ●● ●●●● ●
● ● ● ●

●●● ●●●● ●
●

●

● ●● ●
●

●

●●●
●●

●● ● ●
● ●●●● ● ● ●

●● ●
●
●●●●●● ●

●●
●●

●●
● ●

● ●●
●

●●●● ●●●
● ●●●● ● ● ●●●●● ●● ●●

●●
●●

●
● ●●

● ●
●

● ●●
● ●● ●

●
●

● ●●●
●●●● ●● ● ●●●●

●● ●●● ● ●●● ●●●
● ●

●
●

●●● ●
●

●
●

●
●●●

●
●●

●
●● ●●● ●
●● ●●●

●
●

●
● ●●

●
●●● ●

●

●●
●

●
● ●●●●

●●●

●
●● ● ●

●
●●

●

●
●

●
●

●●
●●

●●
●

●

●

●●
●

●
●●

●●
● ●● ●●● ●

●

●● ●●●
●

●●
●●●
●●●

●

● ● ●●● ●●
● ●●●

●
●●

●● ●●●

●

●● ●●
●

● ●

●
●

●
● ●

●
●●

●

●
●●● ●

●

●●●●
●

●●
●

●
●● ●●●

●
●● ●●●

●●●
●

●●●●
●●● ●●
●● ●●● ●●

●
●
●●●

●
●
●

●
●

●●
●●

●
● ●

●
●● ●●

●
● ● ●● ●●

● ● ● ● ●● ●
●

●●●●●● ● ●●●●
● ●●●● ●●
● ●
●● ●● ●●

●
●● ●●

●●●
●● ● ●

●

● ●● ●●
●

●
●

●
●●

●
●●●●

●●●
● ●●●● ●●● ●●

●
●

●
● ●
●

●●
●●

● ●●
● ●●●
●

●●
● ●●●●●●●● ●● ●●●

●●
●
●●● ●

●
●● ●●●●●●● ●●●● ●●

●

●● ● ●●●
● ●●●

●
●
●

● ●● ●●●
● ● ●●●●●●

●
● ●●●●

●●
●

●
●●●● ●

●
●

●
●

● ●

●
●

●●
●

●
●●

●
●

●
●●●

●
●
●

●●

●

●

●
●●

●
●

●●
●●●●●

●
●

●
● ●

●●
●

●●● ●
●●● ●●

●●

● ●

●
●

● ●

●

● ●● ●
●●

●
●● ●●●● ●

●
●

●

●
●●

●
●●●● ●

●
●

●●●
●●

●● ●●● ●
●

●

● ●●●●
●

●● ●●
●●●

● ●●●●●
●

●

●

●
●●● ●●● ● ●●● ●

● ● ● ●●
● ●●● ●● ●●●●

●●
●● ●●●●●

●●
●
● ●

●● ●
● ●

●●●● ●●

●

●
●
●

●
●
●●●●●● ● ●

●
●

●●●●● ●●
● ●

●
● ●●● ●●

●●
●●

●
●●● ●

● ●●● ●● ●●● ●
●

●●
●

●
●●●●● ●● ●● ●

●

●
● ●● ●● ●●●● ●● ●●●
● ●

●
●●

●●
●●●●

●
●

●●●●
●

●

●
● ●●

● ● ●●
●● ●●

●
●

●● ●
●

● ●

●
●●

●
●

●●●

● ●●●
●

●●
●●● ●
●●

●
●●● ●●● ●

●

●
●

●● ●●

●
●●● ●●

●
●

●
●

●
●●

●
●●
● ●

●● ●● ●
●● ●

●
●● ●

●
●●

●
●●●

●
●
● ●●● ●●● ●● ●●●●

●
●

●
●

●

● ●

●●
●●

●

●

●
●●●

●

●
● ●●●●

●
●●● ● ●

●
● ●●

●●●
● ●●● ●● ●

●
●

●
● ●

● ● ●●●
● ●●●

●● ●●

●

●
●●

● ●
●

●

●●●
●

●● ● ●●● ●
●●

●●●
●

●● ●● ●
●●

●
●●●

●

●

●●● ●●
●

● ●
●

●
●
●●● ●● ●●●●

●
● ●●●

●
●

●
● ●●●● ● ●●

●● ●
●

●● ●● ●●
●

●●

●●
●● ●

●●
●

●

●
●

●
●

●
●●

●
●

●●
●● ●● ●

●
●

●

●

● ●

●
●● ●

●●
●

●●
●

●
●●

●●●● ●●
●●●●● ●●

●

●
●●

● ●● ● ●●
●●

●
●●

● ●

●

●

●
●

● ● ●

●
● ●

●●●
●●●●

● ●● ●
●

●
● ●

●

●

● ●
●

●●
●

●
●

●● ●●●● ●●●

●
●

●●●●
●

● ●
● ●

●
●●●

●●
●

●
●

●●● ●
●

● ●
●

●
●●●

●●●●●
●●

●
●● ●●● ●●

●
● ●● ●●●

●●
●●●● ● ●●●●
●

●● ●●● ●●● ●
●

●●● ● ●●●●
●

●

●
● ●●●

●
●● ●● ●● ●● ●●●●● ●●●●
●● ●●●

●
●● ● ●

●● ●●● ● ●
●

●
●●●

●
●●● ●●●●●●

● ● ●●
●● ●

●
●

●●●
●

●

●●
●
●●●
● ●●

● ●●
●● ●●● ●● ●● ●●●●●●

● ●●●● ●●

●
●●

●
●

●●
●●

●
● ●● ●

● ●
●●

●

●
●●
●●

●
●●●●

●

●●
●●●●
●●

●
●●

●

● ●
●

●●●

●
●●●
●

● ●

●
●

●●●● ●

●

●
●

●● ●
●●

●
●
●● ●●●

●

●
●●

●
●●

●●

●
●

A1 A2 A3 C D

I J K M1 M2

P R1 R2 R3 S

T1 T2 V W1 W2

Z

6.0
6.5
7.0
7.5

6.0
6.5
7.0
7.5

6.0
6.5
7.0
7.5

6.0
6.5
7.0
7.5

6.0
6.5
7.0
7.5

2 4 6 8
Frequency

R
T



LI539
Mixed
Effect

Models

Dave
Klein-

schmidt

Introduction

Split-apply-
combine:
plyr

Functions
are your
friends

apply
yourself

split-apply-
combine

Convenience
functions

Use cases

Data
analysis

Modeling
and simu-
lation

Data wide
and long:
reshape(2)

melt

cast

reshape
and plyr

split-apply-combine

plyr is built around the conceptual structure of split-apply-combine

split your data up in some way.

apply some function to each part.

combine the results into the output structure.

This is a common structure in many data analysis tasks, and R already
has some facilities for it.

plyr unifies these in a single interface and provides some nice helper
functions, and also makes the split-apply-combine structure explicit.

Before we get to plyr itself, let’s have a short review of some basic
functional programming concepts.
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functions: how do they work

Formally: take some input, do something, and produce some output.

You use functions in R all the time.
Most of the functions you’re familiar with have names and are built in (or
provided by libraries).

mean(runif(100))

## [1] 0.4781

But there’s nothing special about functions in R, they’re objects, just like
any other data type

This means they can, for instance, be assigned to variables:

f <- mean

f(runif(100))

## [1] 0.4859



LI539
Mixed
Effect

Models

Dave
Klein-

schmidt

Introduction

Split-apply-
combine:
plyr

Functions
are your
friends

apply
yourself

split-apply-
combine

Convenience
functions

Use cases

Data
analysis

Modeling
and simu-
lation

Data wide
and long:
reshape(2)

melt

cast

reshape
and plyr

(anonymous) functions: how do they work

Functions are objects that are created with the function keyword

function(x) sum(x)/length(x)

## function(x) sum(x)/length(x)

## <environment: 0x1044f3710>

Functions are by their nature “anonymous” in R, and have no name, in
the same way that the vector c(1,2,3) is just an object, with no
intrinsic name (this is unlike other languages, like Java or C).

New functions can be assigned to variables to be called over and over
again

mymean <- function(x) sum(x)/length(x)

mymean(runif(100))

## [1] 0.467

mymean(runif(100, 1, 2))

## [1] 1.529

...or just evaluated once

(function(x) sum(x)/length(x)) (runif(100))

## [1] 0.5171

(notice the parentheses around the whole function definition)
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functions, environments, and closures

A function object lists an environment when it’s printed to the console

This is because functions are really closures in R.

They include information about the values of variables when the function
was created.
You can take advantage of this to make “function factories”:

make.power <- function(n) {
return(function(x) x^n)

}
my.square <- make.power(2)

my.square(3)

## [1] 9

(make.power(4)) (2)

## [1] 16

See Hadley Wickham’s excellent chapter on functional programming in R
for more on this: https://github.com/hadley/devtools/wiki/

Functional-programming

https://github.com/hadley/devtools/wiki/Functional-programming
https://github.com/hadley/devtools/wiki/Functional-programming
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functions: how do they work

Function declarations have three parts:
1 The function keyword
2 Comma-separated list of function arguments
3 The body of the function, which is an expression (multi-statement

expression should be enclosed in braces {}). The value of the expression is
used for the returned value of the function if no return statement is
encountered in the body.

For instance:

mean.and.var <- function(x) {

m <- mean(x)

v <- var(x)

data.frame(mean=m, var=v)

}
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a few function tips

The ellipsis ... can be included in the arguments list and “captures” any
arguments not specifically named. This is useful to pass on other
arguments to other function calls in the body (as we’ll see later).

You can specify default values for arguments by argument=default.

R has very sophisticated argument resolution when a function is called. It
first assigns named arguments by name, and then unnamed arguments
are assigned positionally to unfilled arguments. So you can say something
like
sd(rnorm(sd=5, mean=1, 100))

## [1] 4.912

where the last argument is interpreted as n, even though the specification
of rnorm calls for n to be first:
rnorm

## function (n, mean = 0, sd = 1)

## .Internal(rnorm(n, mean, sd))

## <bytecode: 0x104989510>

## <environment: namespace:stats>
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Your first foray into functional programming

R is a functional programming language at its heart.

One of the most basic operations of functional programming is to apply a
function individually to items in a list.

In base R, this is done via lapply (for list-apply) and friends:

list.o.nums <- list(runif(100), rnorm(100), rpois(100, lambda=1))

lapply(list.o.nums, mean)

## [[1]]

## [1] 0.4703

##

## [[2]]

## [1] 0.03472

##

## [[3]]

## [1] 0.89

The “big three” apply functions in R are lapply (takes and returns a
list), sapply (like lapply but attempts to simplify output into a vector
or matrix), and apply (which works on arrays).
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unleash the power of anonymous functions

When combined with lapply and friends, anonymous functions are
extremely powerful.

You could, for instance, run a simulation with a range of parameter
values:
sapply(1:10, function(n) rpois(5, lambda=n))

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 0 2 1 2 4 10 10 7 6 6

## [2,] 1 3 4 6 3 5 9 6 17 9

## [3,] 0 0 2 7 5 4 5 13 12 5

## [4,] 1 1 3 3 5 6 6 4 15 9

## [5,] 0 3 3 5 2 8 8 10 8 6

Or repeat the same simulation multiple times, calculating a summary
statistics for each repetition:

sapply(1:10, function(n) mean(rnorm(n=5, mean=0, sd=1)))

## [1] 0.20120 0.03167 0.49330 -0.07796 0.08483 0.01232 -0.68791

## [8] -0.21145 0.13870 -0.52366
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split-apply-combine

You might also use sapply calculate the mean RT (for instance) for each
subject, by using split to create a list of each subject’s RTs:

data(lexdec, package='languageR')
RT.bysub <- with(lexdec, split(RT, Subject))

RT.means.bysub <- sapply(RT.bysub, mean)

head(data.frame(RT.mean=RT.means.bysub))

## RT.mean

## A1 6.278

## A2 6.220

## A3 6.398

## C 6.322

## D 6.406

## I 6.253
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split-apply-combine

This is a common data-analysis task: split up the data in some way,
analyze each piece, and then put the results back together again.

The plyr package (Wickham, 2011) was designed to facilitate this
process.

For instance, instead of that split/sapply combo, we could use the
ddply function:

library(plyr)

head(ddply(lexdec, .(Subject), function(df) data.frame(RT.mean=mean(df$RT))))

## Subject RT.mean

## 1 A1 6.278

## 2 A2 6.220

## 3 A3 6.398

## 4 C 6.322

## 5 D 6.406

## 6 I 6.253
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split-apply-combine

The ddply call has three parts:

ddply(lexdec, .(Subject), function(df) data.frame(RT.mean=mean(df$RT)))

1 The data, lexdec

2 The splitting variables, .(Subject). The .() function is a utility
function which quotes a list of variables or expressions. We could just as
easily have used the variable names as strings c("Subject") or
(one-sided) formula notation ~Subject.

3 The function to apply to the individual pieces. In this case, the function
takes a data.frame as input and returns a data.frame which has one
variable—RT.mean. The splitting variables are automatically added before
the results are combined.
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plyr functions: input

Plyr commands are named based on their input and output.

The first letter refers to the format of the input.

The input determines how the data is split:
d*ply(.data, .variables, .fun, ...) takes data frame input and
splits it into subsets based on the unique combinations of the .variables.
l*ply(.data, .fun, ...) takes list input, splitting the list and passing
each element to .fun.
a*ply(.data, .margins, .fun, ...) takes array input, and splits it into
sub arrays by .margins (just like base R apply). For instance, if
.margins = 1 and .data is a three-D array, then
.data[1, , ], .data[2, , ], ... are each passed to .fun.
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plyr functions: output

The second letter of the command name refers to the output format

The output determines how the data is combined at the end:
*dply takes the result of its .fun and turns it into a data frame, then adds
the splitting variables (values of .variables for ddply, list names for
ldply, or array dimnames for adply) before rbinding the individual data
frames together
*lply just returns a list of the result of applying .fun to each individual
split, just like lapply, but additionally adds names based on the splitting
variables.
*aply tries to assemble the output of .fun into a big array, where the
combine dimensions are the last ones. For instance, if .fun returns a
two-dimensional array (always of the same size), and there were three
splitting variables or dimensions originally, then the output would be a
five-dimensional array, with dimensions 1 to 2 corresponding to the .fun
output dimensions and 2 to 5 the splitting variables.
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try it: output behavior of plyr commands

Task

Let’s use the lexdec data set to explore the output behavior of plyr. Start
with this ddply call (copy and paste from the slides pdf, or from the
accompanying .R file):

library(plyr)

data(lexdec, package='languageR') # load the dataset if it isn't already

ddply(lexdec, .(PrevType, Class), function(df) with(df, data.frame(meanRT=mean(RT))))

1 What does this do? Look at the lexdec data frame, run the command,
and interpret the output.

2 Are these numbers “really” different? Change the function to also return
the variance (or standard deviation or standard error, or whatever other
measure you think might be useful).

3 Change it to return a list instead using dlply. The output might look a
little funny. Why? Use str to investigate the output.

4 Now make it return an array using daply. The output will probably look
totally wrong. Why? (Hint: use str to look at the output, again). Fix it
so that it does what you’d expect/like it to do.
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subset

An added level of convenience comes from the fact that any extra
arguments to, e.g., ddply are passed to the function which operates on
each piece

This means you can use functions like subset or transform which take a
data frame and return another data frame.
For instance, to find the trial with the slowest RT for each subject, split
by Subject and then use subset:

slowestTrials <- ddply(lexdec, .(Subject), subset, RT==max(RT))

head(slowestTrials[, c('Subject', 'RT', 'Trial', 'Word')])

## Subject RT Trial Word

## 1 A1 7.115 79 tortoise

## 2 A2 6.832 66 lion

## 3 A3 7.132 157 radish

## 4 C 6.680 145 frog

## 5 D 6.984 172 chicken

## 6 I 7.136 48 snake

This is equivalent to both

ddply(lexdec, .(Subject), function(df, ...) subset(df, ...), RT==max(RT))

ddply(lexdec, .(Subject), function(df) subset(df, RT==max(RT)))
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transform

Another super convenient function is transform, which adds variables to
a data frame (or replaces them) using expressions evaluated using the
data frame as the environment (like the with function).

For instance, we often standardize measures before regression (center and
possibly scale).

If the reaction time distributions of individual subjects are very different,
then we might want to standardize them for each subject individually. In
“verbose” ddply, we could do

ddply(lexdec, .(Subject), function(df) {
df$RT.s <- scale(df$RT)

return(df)

})

However, we can be more concise using transform:

lexdecScaledRT <- ddply(lexdec, .(Subject), transform, RT.s=scale(RT))

This expresses very transparently what we’re trying to do: transform the
data by adding a variable for the scaled (zero mean and unit sd) reaction
time.
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summarise

plyr also provides the convenience function

summarise

(with an s!).

This function, like transform, takes the form

summarise(.data, summVar1=expr1, summVar2=expr2, ...)

but unlike transform it creates a new data frame with only the specified
summary variables.
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summarise

For instance, to find the mean and variance of each subject’s RT, we
could use
lexdec.RTsumm <- ddply(lexdec, .(Subject), summarise, mean=mean(RT), var=var(RT))

head(lexdec.RTsumm)

## Subject mean var

## 1 A1 6.278 0.05419

## 2 A2 6.220 0.03204

## 3 A3 6.398 0.02408

## 4 C 6.322 0.01544

## 5 D 6.406 0.03289

## 6 I 6.253 0.04960

This is more concise than the similar example a few slides ago

ddply(lexdec, .(Subject), function(df) with(df, data.frame(meanRT=mean(RT))))

and, like with transform, makes our intentions much clearer.



LI539
Mixed
Effect

Models

Dave
Klein-

schmidt

Introduction

Split-apply-
combine:
plyr

Functions
are your
friends

apply
yourself

split-apply-
combine

Convenience
functions

Use cases

Data
analysis

Modeling
and simu-
lation

Data wide
and long:
reshape(2)

melt

cast

reshape
and plyr

transform+summarise exercises

Task

Let’s investigate the relative ordering of RTs for different words

1 Add a new variable RTrank which is the rank-order of the RT for each
trial, by subject. That is, RTrank=1 for that subject’s fastest trial, 2 for
the second-fastest, etc. Hint: rank finds the rank indices of a vector.

2 Find the average RT rank for each word, using summarise.

3 Plot the relationship between the word frequencies and their average rank.

4 If you’re feeling fancy, put errorbars on the words showing the 25% and
75% quantiles.

5 Which word has the highest average RT rank? The lowest?
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transform+summarise solution

lexdec <- ddply(lexdec, .(Subject), transform, RTrank=rank(RT))

word.rt.ranks <- ddply(lexdec, .(Word, Frequency), summarise,

RTrank25=quantile(RTrank, 0.25),

RTrank75=quantile(RTrank, 0.75),

RTrank=mean(RTrank))

ggplot(word.rt.ranks, aes(x=Frequency, y=RTrank, ymin=RTrank25, ymax=RTrank75)) +

geom_pointrange()
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subset(word.rt.ranks,

RTrank %in% c(max(RTrank), min(RTrank)))

## Word Frequency RTrank RTrank25 RTrank75

## 3 apple 6.304 21.79 10 32

## 75 vulture 4.248 68.88 68 75
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example use cases

Let’s go through some exampes of how you might use plyr for

Data analysis and exploration.

Exploring models through simulation.
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Checking distribution of errors

Let’s check to see whether the errors in lexdec responses are evenly
distributed across native and non-native speakers.

There are a couple of ways to do this. We could use ddply and
summarise like above:
ddply(lexdec, .(NativeLanguage), summarise, acc=mean(Correct=='correct'))

## NativeLanguage acc

## 1 English 0.9705

## 2 Other 0.9480

We could also use daply to get an array of raw counts of correct and
incorrect responses, by splitting on NativeLanguage and Correct and
then extracting the number of rows in each split:

daply(lexdec, .(NativeLanguage, Correct), nrow)

## Correct

## NativeLanguage correct incorrect

## English 920 28

## Other 674 37
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Checking distribution of errors

Why might we want the latter option? It’s the format that chisq.test
expects:

correctCounts <- daply(lexdec, .(NativeLanguage, Correct), nrow)

chisq.test(correctCounts)

##

## Pearson's Chi-squared test with Yates' continuity correction

##

## data: correctCounts

## X-squared = 4.884, df = 1, p-value = 0.02711
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Estimate the frequency effect for each subject

Let’s estimate the effect of frequency on RT for each subject separately
(perhaps to get a sense of whether to include random slopes in a mixed
effects model).

We can do this using a combination of ddply and coef:

subjectSlopes <- ddply(lexdec, .(Subject), function(df) {coef(lm(RT~Frequency, data=df))})

We can see that these slopes show a fair amount of variability,

summary(subjectSlopes$Frequency)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.09810 -0.05380 -0.03830 -0.04290 -0.02830 -0.00403

so it might make sense to include random slopes in later regression
modeling.
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Estimate the frequency effect for each subject

As a sanity check, we can also plot the fitted regression lines against the
original data points:

ggplot(lexdec, aes(x=Frequency, y=RT)) +

geom_point() +

facet_wrap(~Subject) +

geom_abline(data=subjectSlopes, aes(slope=Frequency, intercept=`(Intercept)`), color='red')
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Investigate interaction between frequency and native language
background.

Let’s first construct a factor variable which is a binary high frequency-low
frequency variable.

lexdec <- transform(lexdec,

FreqHiLo=factor(ifelse(Frequency>median(Frequency),

'high', 'low'),
levels=c('low', 'high')))

Then, use ddply and summarise to create a summary table for your
conditions of interest
se <- function(x) sd(x)/sqrt(length(x))

langfreq.summ <- ddply(lexdec,

.(NativeLanguage, FreqHiLo),

summarise, mean=mean(RT), se=se(RT))
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data exploration and errorbars

We can quickly plot condition means and 95% CIs using ggplot (etc.)
and the ddply output

ggplot(langfreq.summ, aes(x=FreqHiLo, color=NativeLanguage,

y=mean, ymin=mean-1.96*se, ymax=mean+1.96*se)) +

geom_point() +

geom_errorbar(width=0.1) +

geom_line(aes(group=NativeLanguage))
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Wow! What a huge effect!

...but wait.

Calculating the standard error in this way assumes that, for the purposes
of comparing the condition means, each observed RT is an independent
draw from the same normal distribution.

But in fact, they are not: observations are grouped both by subject and
by item (word).

One way of dealing with this: look at the by-subject standard error, by
averaging within each subject and then treating each subject as an
independent draw from the underlying condition.

This is the “by-subject” analysis, like the “F1” ANOVA.
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by-subject standard errors with ddply

Computing the by-subject standard errors is a two-step process, both of which
can be done with a single ddply command:

1 Average within each subject and combination of conditions:

langfreq.bysub <- ddply(lexdec, .(NativeLanguage, FreqHiLo, Subject),

summarise, RT=mean(RT))

2 Then, calculate the condition means and standard errors as before:

langfreq.bysub.summ <- ddply(langfreq.bysub,

.(NativeLanguage, FreqHiLo),

summarise, mean=mean(RT), se=se(RT))



LI539
Mixed
Effect

Models

Dave
Klein-

schmidt

Introduction

Split-apply-
combine:
plyr

Functions
are your
friends

apply
yourself

split-apply-
combine

Convenience
functions

Use cases

Data
analysis

Modeling
and simu-
lation

Data wide
and long:
reshape(2)

melt

cast

reshape
and plyr

by-subject standard errors

When we plot the resulting error bars, the effects look much smaller compared
to the variability across subjects (and small number of subjects):

ggplot(langfreq.bysub.summ, aes(x=FreqHiLo, color=NativeLanguage,

y=mean, ymin=mean-1.96*se, ymax=mean+1.96*se)) +

geom_point() +

geom_errorbar(width=0.1) +

geom_line(aes(group=NativeLanguage))
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try it: by-item standard errors

Task

Use ddply to do the “F2” or by-item analysis, finding by-item standard
errors, treating the words as items.

Plot the resulting errorbars, and use this (and the actual ddply output)
to interpret the results.
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by-item standard errors (solution)

langfreq.byitem <- ddply(lexdec, .(NativeLanguage, FreqHiLo, Word), summarise, RT=mean(RT))

langfreq.byitem.summ <- ddply(langfreq.byitem,

.(NativeLanguage, FreqHiLo),

summarise, mean=mean(RT), se=se(RT))

## ggplot(langfreq.byitem.summ, aes(x=FreqHiLo, color=NativeLanguage,

## y=mean, ymin=mean-2*se, ymax=mean+2*se)) +

## geom_point() +

## geom_errorbar(width=0.1) +

## geom_line(aes(group=NativeLanguage))
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A few other plyr tricks

The plyr functions m*ply and r*ply are wrappers for other forms which
make simulations more convenient. Check out the documentation
(?mdply) and the plyr article in J. Stat. Software.

Because they combine things in nice ways, plyr functions can help R
data functions play nicely together.

To concatenate a list of data frames into one big data frame, you can use
ldply(list.of.dfs, I) (the identity function I just returns its input).
To “shatter” an array into a data frame where the dimension names are
stored in columns, you can use adply(an.array, 1:ndim(an.array), I).
Any margins left out then index rows. If any dimensions are named, they
will be transferred to the data frame in a smart way.

Use subset and ddply to remove outliers subject-by-subject

Check balance (number of trials/subjects in each condition) using nrow

and ddply of daply (like the correct/incorrect example).
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Simulating data sets and model exploration
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Simulating data sets and model exploration

The best way to understand a model is to simulate fake data and see
what the model does with it.

Frequently the process goes as follows:
1 Pick some range of parameter values (random effect variance vs. residual

variance).
2 Generate some data using those parameters
3 Fit model to that data, and record summary statistics.

This fits well within the split-apply-combine pattern of plyr.

For example, let’s look at how not accounting for random slopes and
intercepts inflates Type I error rates.

We’ll generate fake data for a binary “frequency” variable which has a
true effect of 0, then fit lm and lmer models with random intercept and
slope.

Let’s start simple, fitting the models to one set of parameters, repeating
the simulation 100 times.
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step 1: simulate data

library(plyr)

library(mvtnorm)

library(lme4)

make.data.generator <- function(true.effects=c(0,0),

resid.var=1,

ranef.var=diag(c(1,1)),

n.subj=24,

n.obs=24

)

{
# create design matrix for our made up experiment

data.str <- data.frame(freq=factor(c(rep('high', n.obs/2), rep('low', n.obs/2))))

contrasts(data.str$freq) <- contr.sum(2)

model.mat <- model.matrix(~ 1 + freq, data.str)

generate.data <- function() {
# sample data set under mixed effects model with random slope/intercepts

simulated.data <- rdply(n.subj, {
beta <- t(rmvnorm(n=1, sigma=ranef.var)) + true.effects

expected.RT <- model.mat %*% beta

epsilon <- rnorm(n=length(expected.RT), mean=0, sd=sqrt(resid.var))

data.frame(data.str,

RT=expected.RT + epsilon)

})
names(simulated.data)[1] <- 'subject'
simulated.data

}
}
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step 2: fit model

fit.models <- function(simulated.data) {
# fit models and extract coefs

lm.coefs <- coefficients(summary(lm(RT ~ 1+freq, simulated.data)))[, 1:3]

rand.int.coefs <- summary(lmer(RT ~ 1+freq + (1|subject), simulated.data))@coefs

rand.slope.coefs <- summary(lmer(RT ~ 1+freq + (1+freq|subject), simulated.data))@coefs

# format output all pretty

rbind(data.frame(model='lm', predictor=rownames(lm.coefs), lm.coefs),

data.frame(model='rand.int', predictor=rownames(rand.int.coefs), rand.int.coefs),

data.frame(model='rand.slope', predictor=rownames(rand.slope.coefs), rand.slope.coefs))

}
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step 3: put it together + repeat

gen.dat <- make.data.generator()

simulations <- rdply(.n=100,

fit.models(gen.dat()),

.progress='text')

head(simulations)

## .n model predictor Estimate Std..Error t.value

## 1 1 lm (Intercept) -0.2934 0.09819 -2.9886

## 2 1 lm freqlow 0.2767 0.13886 1.9925

## 3 1 rand.int (Intercept) -0.2934 0.19183 -1.5297

## 4 1 rand.int freqlow 0.2767 0.12062 2.2938

## 5 1 rand.slope (Intercept) -0.2934 0.27966 -1.0493

## 6 1 rand.slope freqlow 0.2767 0.43265 0.6395

daply(simulations, .(model, predictor), function(df) type1err=mean(abs(df$t.value)>1.96))

## predictor

## model (Intercept) freqlow

## lm 0.45 0.52

## rand.int 0.12 0.62

## rand.slope 0.03 0.04
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step 4: visualize

# use reshape2::melt to get the data into a more convenient format (see next section)

ggplot(simulations, aes(x=t.value, color=model)) +

geom_vline(xintercept=c(-1.96, 1.96), color='#888888', linetype=3) +

scale_x_continuous('t value') +

geom_density() +

facet_grid(predictor~.)

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

(Intercept)
freqlow

−5 0 5
t value

de
ns

ity

model

lm

rand.int

rand.slope



LI539
Mixed
Effect

Models

Dave
Klein-

schmidt

Introduction

Split-apply-
combine:
plyr

Functions
are your
friends

apply
yourself

split-apply-
combine

Convenience
functions

Use cases

Data
analysis

Modeling
and simu-
lation

Data wide
and long:
reshape(2)

melt

cast

reshape
and plyr

different parameter values

What if we want to run the simulation with different sets of parameter
values?
Create a data frame of parameters, using expand.grid on arguments
which have the same names as the arguments to make.data.generator.

head(params <- expand.grid(n.obs=c(4, 16, 64), n.subj=c(4, 16, 64)))

## n.obs n.subj

## 1 4 4

## 2 16 4

## 3 64 4

## 4 4 16

## 5 16 16

## 6 64 16

And then use mdply on the result.

man.simulations <- mdply(params, function(...) {
make.data <- make.data.generator(...)

rdply(.n=100, fit.models(make.data()))

}, .progress='text')
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digression: mdply

mdply(params, function(...) {
make.data <- make.data.generator(...)

rdply(.n=100, fit.models(make.data()))

}, .progress='text')

mdply is like Map: it passes the variables in a data frame (split
row-by-row) as named arguments to the function. The
function(...) {} syntax means that the function will accept any
named arguments, and then recycle them wherever the ... occurs
anywhere inside the body. Thus, this mdply will pass the columns of
params as arguments to the make.data.generator() function, no
matter which parameters you specify.

This specific example (where the parameters are n.obs and n.subj) is
equivalent to:

ddply(params, .(n.obs, n.subj), function(df) {
make.data <- make.data.generator(n.obs=df$n.obs, n.subj=df$n.subj)

rdply(.n=100, .fun=fit.models(make.data()))

}, .progress='text')
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reshape2

(If we have time): talk about changing format of data using melt and cast

from the reshape2 package.
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What does your data look like?

Data doesn’t always look like tools like ggplot (or ddply) expect it to.

What if your experiment spits out a data file where each trial is a
different column?
The lexical decision data set might look like this:

## Subject 23_RT 23_Correct 24_RT 24_Correct 25_RT 25_Correct

## 1 A1 6.340359 correct <NA> <NA> <NA> <NA>

## 2 A2 6.329721 correct <NA> <NA> 6.20859 correct

## 3 A3 <NA> <NA> <NA> <NA> <NA> <NA>

## 4 C 6.533789 correct <NA> <NA> <NA> <NA>

## 5 D <NA> <NA> 6.232448 correct <NA> <NA>

## 6 I <NA> <NA> 6.194405 correct <NA> <NA>

## 7 J 6.714171 correct <NA> <NA> <NA> <NA>

(there are missing values because non-word trials are excluded)
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Wide vs. long data

There are two ways of structuring data:

## Subject Trial variable value

## 1 A1 23 RT 6.340359

## 2 A1 27 RT 6.308098

## 3 A1 29 RT 6.349139

## 4 A1 30 RT 6.186209

## 5 A1 32 RT 6.025866

long Each observation gets exactly one
row, with values in “id” columns giving
identifying information (like subject,
trial, whether the observed value is a
correct/incorrect response or a RT
observation, etc.)

## Subject 23_RT 23_Correct 24_RT

## 1 A1 6.340359 correct <NA>

## 2 A2 6.329721 correct <NA>

## 3 A3 <NA> <NA> <NA>

## 4 C 6.533789 correct <NA>

## 5 D <NA> <NA> 6.232448

wide Each row contains all the
observations for a unique combination
of identifying variables (say, one
subject). Column names identify the
kind of observation in that row (trial
number, observation type).
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reshaping data

Converting between wide and long data representations is a common task
in data analysis

(especially data import/cleaning)

The reshape2 package streamlines this process in R.

(Most of the functionality of reshape2 is a special case of what plyr
does).
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melt and cast

Two main functions in reshape2

melt converts an array or data frame into a long format.

dcast and acast convert “molten” data into a range of different shapes
from long to wide.
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melt with you, (I’ll stop the world and)

Let’s start with an example.

Here’s the wide data frame from above:
ld.wide[1:5, 1:7]

## Subject 23_RT 23_Correct 24_RT 24_Correct 25_RT 25_Correct

## 1 A1 6.340359 correct <NA> <NA> <NA> <NA>

## 2 A2 6.329721 correct <NA> <NA> 6.20859 correct

## 3 A3 <NA> <NA> <NA> <NA> <NA> <NA>

## 4 C 6.533789 correct <NA> <NA> <NA> <NA>

## 5 D <NA> <NA> 6.232448 correct <NA> <NA>

When you melt data, you have to specify which variables (columns) are
id variables and which are measure variables.
head(ld.m <- melt(ld.wide, id.var='Subject', na.rm=T))

## Subject variable value

## 1 A1 23_RT 6.340359

## 2 A2 23_RT 6.329721

## 4 C 23_RT 6.533789

## 7 J 23_RT 6.714171

## 8 K 23_RT 6.011267

## 10 M2 23_RT 6.848005
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melt

Now use str_split (from the stringr package) to separate the trial
number and measure information.
require(stringr)

trials.and.vars <- ldply(str_split(ld.m$variable, '_'))
names(trials.and.vars) <- c('Trial', 'measure')

str_split returns a list of splits but we can use ldply to convert to a
dataframe, to which we add informative names.

The extracted trial numbers and RT/correct indicators can then be
combined with the melted data with cbind.
head(ld.m <- cbind(ld.m, trials.and.vars))

## Subject variable value Trial measure

## 1 A1 23_RT 6.340359 23 RT

## 2 A2 23_RT 6.329721 23 RT

## 4 C 23_RT 6.533789 23 RT

## 7 J 23_RT 6.714171 23 RT

## 8 K 23_RT 6.011267 23 RT

## 10 M2 23_RT 6.848005 23 RT
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melt syntax

To specify the measure and id variables, use measure.vars= and
id.vars= arguments.

You can specify them as indices (column numbers) or names.

melt will try to guess the id and measure variables if you don’t specify
them.

If you specify only measure vars, melt will treat the other variables as id
variables (and vice-versa)

If you want some variables ommitted, specify the measure and id
variables that you want and the others will be dropped.
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cast

melt gets your data into a “raw material” that can be easily converted to
other more useful formats.

Molten data can be converted to different shapes using the *cast

commands.

dcast creates a data frame, and acast creates an array.

Both commands take molten data and a formula which defines the new
shape.
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cast

dcast takes a two-dimensional formula. The left hand side tells which
variables determine the rows, and the right side the columns

Let’s put RT and correct in their own columns. The ld.m$measure
variable indicates whether the ld.m$value is an RT or a correct measure,
so we put that variable on the right-hand side of the formula.

head(dcast(ld.m, Subject+Trial ~ measure))

## Subject Trial Correct RT

## 1 A1 100 correct 6.126869

## 2 A1 102 correct 6.284134

## 3 A1 106 correct 6.089045

## 4 A1 108 correct 6.383507

## 5 A1 109 correct 6.22059

## 6 A1 111 correct 6.381816
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cast

We can also use the shorthand ... to indicate all other (non-value)
variables:
head(dcast(ld.m, ... ~ measure))

## Subject variable Trial Correct RT

## 1 A1 23_RT 23 <NA> 6.340359

## 2 A1 23_Correct 23 correct <NA>

## 3 A1 27_RT 27 <NA> 6.308098

## 4 A1 27_Correct 27 correct <NA>

## 5 A1 29_RT 29 <NA> 6.349139

## 6 A1 29_Correct 29 correct <NA>

But this is no good here because ld.m$variable also encodes
information about measure, so we have to remove it first to be able to
use ...

ld.m$variable <- NULL

head(dcast(ld.m, ... ~ measure))

## Subject Trial Correct RT

## 1 A1 100 correct 6.126869

## 2 A1 102 correct 6.284134

## 3 A1 106 correct 6.089045

## 4 A1 108 correct 6.383507

## 5 A1 109 correct 6.22059

## 6 A1 111 correct 6.381816
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cast syntax

Specify the shape of the “cast” data using a formula. For each
combination of the values of variables on the left-hand side, there will be
one row, and likewise for columns with the right-hand side.

For dcast, the data frame will also have left-hand variables in columns in
the resulting data frame. Right-hand variables will have their values
pasteed together as column names for the other columns.

If you want higher-dimensional output, you can use acast which creates
an array (specify dimensions like
dim1var1 ~ dim2var1 + dim2var2 ~ dim3var1).

If there is no variable called value, then cast will try to guess. You can
override the defaults by specifying the value.var= argument.
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cast aggregation

If the formula results in more than one value in each cell, you need to
specify an aggregating function (like in ddply) via the fun.aggregate=

argument (you can abbreviate to fun.agg=).

The default is length which tells you how many observations are in that
cell.
head(dcast(ld.m, Subject ~ measure))

## Subject Correct RT

## 1 A1 79 79

## 2 A2 79 79

## 3 A3 79 79

## 4 C 79 79

## 5 D 79 79

## 6 I 79 79

The function you specify must return a single value (more constrained
than plyr).
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”but can’t I just do this in Excel?”

You can!

But it will be tedious and you will make mistakes.

Using tools designed for these data-manipulation tasks makes you be
explicit about the things you are doing to your data.

And when you are done, you have a script which is a complete record of
what you did (and, if you’re using knitr, a nicely formatted report, too).
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plyr and reshape (melt)

The reshape library operations are conceptually related to the
split-apply-combine logic of plyr.

Question: what’s the plyr equivalent of the melt command we saw
before?
melt(ld.wide, id.var='Subject', na.rm=T)

Remember what melt does: split the data by the id variables, and
rearrange the measure variable columns so that they’re in one value
column, moving the column names into a new variable column.

ddply(ld.wide, .(Subject), function(df) {
vars <- names(df)

vals <- t(df)

dimnames(vals) <- NULL

return(subset(data.frame(variable=vars, value=vals),

variable != 'Subject' & !is.na(value)))

})
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plyr and reshape (cast)

Question: how would you write the dcast command from before?

head(dcast(ld.m, Subject+Trial ~ measure))

head(ddply(ld.m, .(Subject, Trial), function(df) {
res <- data.frame(t(df$value))

names(res) <- df$measure

return(res)

}))

## Subject Trial RT Correct

## 1 A1 100 6.126869 correct

## 2 A1 102 6.284134 correct

## 3 A1 106 6.089045 correct

## 4 A1 108 6.383507 correct

## 5 A1 109 6.22059 correct

## 6 A1 111 6.381816 correct
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